

International Journal of Advanced Technology & Engineering Research (IJATER) National Conference on Recent Trends in Science, Technology & Management (NCRTSTM-2018)

IMPROVED EXPONENTIAL PRODUCT TYPE ESTIMATORS OF FINITE POPULATION MEAN IN TWO-PHASE SAMPLING

Archana Panigrahi, Department of Statistics, Surajmal Saha College, Puri, Odisha, India; Gopabandhu Mishra, Department of Statistics, Utkal University, Bhubaneswar, Odisha, India

Abstract

Some improved exponential product type estimators of finite population mean $\overline{\mathbf{Y}}$ under simple random sampling without replacement have been proposed in two-phase sampling using known coefficient of variation and estimated coefficient of variation of study variable (y). The efficiencies of these estimators are compared with the conventional twophase product estimator, the two-phase exponential product type estimator suggested by Singh and Vishwakarma [7] both theoretically and empirically.

Introduction

The use of auxiliary information at the estimation stage improves the efficiency of the estimators. In this context ratio estimator [1, 2], regression estimator [3] and product estimator [4, 5] are most commonly used in sampling literature. In the absence of the knowledge on the population mean of auxiliary variable we go for two-phase sampling or double sampling. In two-phase sampling a large preliminary sample is taken from the population to observe the auxiliary variable 'x' only to estimate \overline{X} and \overline{x}' . Next a sub-sample from the large preliminary sample is considered to observe the study variable 'y' as well as the auxiliary variable 'x' to estimate \overline{x} and \overline{y} .

Bahl and Tuteja [6] developed a exponential product type estimator to estimate finite population mean. Singh and Vishwakarma [7] suggested a exponential product type estimator in two-phase sampling when the information of the population mean of auxiliary variable is lacking.

In this paper following Searls [8], Srivastava [9] and Upadhyaya and Srivastava [10, 11] we developed three exponential product type estimators in two-phase sampling. These estimators are compared theoretically and empirically with the mean per unit estimator (\bar{y}) , conventional two-phase product estimator $(t_{TP} = \frac{\bar{y}}{\bar{x}'} \bar{x})$ and two-phase exponential

product type estimator suggested by Singh and Vishwakarma [7].

Consider a finite population U={1,2,3,....,N}.Let y and x be two real variable assuming the value of y_i and x_i on the ith unit i={1,2,3,....,N}.Now consider y be the of study variable and x be the auxiliary variable. Further we assume that y and x are negatively correlated. Here we consider simple random sampling scheme without replacement (SRSWOR) to draw samples in both phases of two-phase sampling set up. The first phase sample s'(s' c U) of fixed size n' is drawn to observe 'x' only. In the second phase sample 's' of fixed size 'n' is drawn to observe y and x for given s'(n< n').

Let
$$\bar{\mathbf{x}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{x}_i$$
, $\bar{\mathbf{y}} = \frac{1}{n} \sum_{i=1}^{n} \mathbf{y}_i$ and $\bar{\mathbf{x}}' = \frac{1}{n'} \sum_{i=1}^{n'} \mathbf{x}_i$

Now the usual two-phase exponential product estimator and two-phase exponential product type estimator suggested by Singh and Vishwakarma [7] are given by

$$t_{\rm TP} = \frac{\bar{y}}{\bar{x}'} \bar{x} \tag{1.1}$$

$$t_{\text{TEP1}} = \bar{y} \exp\left(\frac{\bar{x} - \bar{x}'}{\bar{x} + \bar{x}'}\right)$$
(1.2)

Now the mean square errors (MSEs) of t_{TP} and t_{TEP1} to $O(\frac{1}{2})$ are given by

$$\begin{split} \text{MSE}(t_{\text{TP}}) &= \overline{Y}^2 \big(\theta_1 - \theta_1^{'} \big) \big(\ C_y^2 + \ C_x^2 + 2C_{yx} \big) \\ &+ \ \theta_1^{'} \overline{Y}^2 C_y^2 \quad (1.3) \end{split} \\ \\ \text{MSE} \ (\ t_{\text{TEP1}}) &= \overline{Y}^2 \big[\theta_1 \ \left(C_{02} + \frac{1}{4} C_{20} + C_{11} \right) \\ &- \ \theta_1^{'} \left(C_{11} + \frac{1}{4} C_{20} \right) \big] \quad (1.4) \\ \text{where,} \ \theta_1 &= \left(\frac{1}{n} - \frac{1}{N} \right) \quad \text{and} \quad \theta_1^{'} &= \left(\frac{1}{n'} - \frac{1}{N} \right) \end{split}$$

Comparing the variance of mean per unit estimator (\bar{y}) , the MSE of two-phase product estimator (t_{TP}) and MSE of two-phase exponential product type estimator (t_{TEP1}) , we

International Journal of Advanced Technology & Engineering Research (IJATER)

National Conference on Recent Trends in Science, Technology & Management (NCRTSTM-2018)

find t_{TEP1} performs better than the estimators (\overline{y}) and t_{TP} if

$$-\frac{3}{4}\frac{C_{x}}{C_{y}} < \rho < -\frac{1}{4}\frac{C_{x}}{C_{y}}$$
(1.5)

where, $\boldsymbol{\rho}$ is the population correlation coefficient

Proposed Estimators

In two-phase (or double) sampling scheme, we proposed following modified exponential product type estimators to estimate population mean \overline{Y}

$$t_{\text{TEP2}} = \frac{\bar{y}}{1 + \theta_1 C_y^2} \exp\left(\frac{\bar{x} - \bar{x}'}{\bar{x} + \bar{x}'}\right)$$
(2.1)

where, $C_y (= \frac{S_y}{\bar{Y}})$, population coefficient of variation of y and further we assume that it is known in advance.

$$t_{\text{TEP3}} = \frac{\bar{y}}{1 + \theta_1 \, \hat{C}_y^2} \, \exp\left(\frac{\bar{x} - \bar{x}'}{\bar{x} + \bar{x}'}\right) \tag{2.2}$$

where, $\hat{C}_y (= \frac{s_y}{\overline{y}})$, sample coefficient of variation of y.

$$t_{\text{TEP4}} = \overline{y} \left(1 + \theta_1 \, \hat{C}_y^2 \right) \exp \left(\frac{\overline{x} - \overline{x}'}{\overline{x} + \overline{x}'} \right)$$
where, $S_y^2 = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \overline{Y})^2$
and $s_y^2 = \frac{1}{n-1} \sum_{i=1}^{n} (y_i - \overline{y})^2$

$$(2.3)$$

Bias and MSE of Different Estimators

Assuming the validity of Taylor's series expansion of t_{TER1} , t_{TER2} , t_{TER3} and t_{TER4} and considering the expected value to $O(\frac{1}{n})$, the bias of the different estimators are $B(t_{\text{TEP1}}) = E(t_{\text{TEP1}}) - \overline{Y}$

$$= \overline{Y} (\theta_1 - \theta'_1) (\frac{1}{2}C_{11} - \frac{1}{8}C_{20})$$
(3.1)

 $B(t_{TEP2}) = E(t_{TEP2}) - \overline{Y}$

$$= \overline{Y} \left[\left(\theta_1 - \theta_1' \right) \left(\frac{1}{2} C_{11} - \frac{1}{8} C_{20} \right) - \theta_1 C_{02} \right] (3.2)$$

 $B(t_{TEP3}) = E(t_{TEP3}) - \overline{Y}$

$$= \overline{Y} \left[(\theta_1 - \theta_1') \left(\frac{1}{2} C_{11} - \frac{1}{8} C_{20} \right) - \theta_1 C_{02} \right] \quad (3.3)$$

$$\begin{split} B(t_{TEP4}) &= E(t_{TEP4}) - \overline{Y} \\ &= \overline{Y} \left[(\theta_1 - \theta_1') \left(\frac{1}{2} C_{11} - \frac{1}{8} C_{20} \right) + \theta_1 C_{02} \right] \quad (3.4) \\ &\text{where,} \quad C_{rs} = \frac{\mu_{rs} \left(x, y \right)}{\overline{X}^r \, \overline{Y}^s} \end{split}$$

 $\mu_{rs}(x, y)$ being the $(r, s)^{th}$ bivariate moment

of x and y.

The mean square errors (MSEs) of different estimators to $O(\frac{1}{n^2})$ are derived as

$$MSE(t_{TEP1}) = \overline{Y}^{2} \left[\left\{ \left(\theta_{1} - \theta_{1}^{'} \right) \left(\frac{1}{4} C_{20} + C_{11} \right) + \theta_{1} C_{02} \right\} + \left\{ \left(\theta_{2} - \frac{3\theta_{1}}{N} \right) - \left(\theta_{2}^{'} - \frac{3}{N} \theta_{1}^{'} \right) \right\} \\ \left(\frac{1}{4} C_{21} - \frac{1}{8} C_{30} + C_{12} \right) + \left\{ \left(\theta_{1}^{2} - \theta_{1}^{'2} \right) + \left(\frac{7}{64} C_{20}^{2} - \frac{5}{8} C_{11} C_{20} \right) + \theta_{1}^{'2} \left(\frac{1}{4} C_{20} C_{02} + \frac{1}{2} C_{11}^{2} \right) \right\}$$
(3.5)

where,
$$\theta_2 = (\frac{1}{n^2} - \frac{1}{N^2})$$
, $\theta'_2 = (\frac{1}{n'^2} - \frac{1}{N^2})$

$$\begin{split} \text{MSE} (t_{\text{TEP2}}) &= \text{MSE} (t_{\text{TEP1}}) - \overline{Y}^2 \left[\theta_1 (\theta_1 - \theta_1') \\ & \left(3C_{11}C_{02} + \frac{1}{4}C_{02}C_{20} \right) + \theta_1^2 C_{02}^2 \right] (3.6) \\ \text{MSE} (t_{\text{TEP3}}) &= \text{MSE} (t_{\text{TEP1}}) - \overline{Y}^2 \left[\theta_1 (\theta_1 - \theta_1') \\ & (C_{11}C_{02} + \frac{1}{4}C_{02}C_{20} + C_{12}) \\ & + \theta_1^2 \left(2C_{03} - 3C_{02}^2 \right) \right] (3.7) \\ \text{MSE} (t_{\text{TEP4}}) &= \text{MSE} (t_{\text{TEP1}}) - \overline{Y}^2 \left[\theta_1^2 (C_{02}^2 \\ & -2C_{03}) - \theta_1 (\theta_1 - \theta_1') \\ & (C_{11}C_{02} + \frac{1}{4}C_{02}C_{20} + C_{12}) \right] (3.8) \end{split}$$

Comparison of Biases and Mean Square Errors

The biases of t_{TEP1} , t_{TEP2} , t_{TEP3} and t_{TEP4} are of order $O(\frac{1}{n})$ and hence, are negligible when sample size is large. The mean square errors of t_{TEP1} , t_{TEP2} , t_{TEP3} and t_{TEP4} to $O(\frac{1}{n})$ are same. Thus for the purpose of comparison, the mean square error of estimators are considered to $O(\frac{1}{n^2})$.

The comparison of efficiencies of estimators are made (a) under general conditions and (b) under bivariate symmetrical distribution.

i.
$$t_{\text{TEP2}}$$
 is more efficient than t_{TEP1} if
Case (a) $C_{11} > -\frac{1}{12(\theta_1 - \theta_1')} [(\theta_1 - \theta_1') C_{20} + 4\theta_1 C_{02}]$ (4.1)

International Journal of Advanced Technology & Engineering Research (IJATER) National Conference on Recent Trends in Science, Technology & Management (NCRTSTM-2018)

i.e.
$$\rho > -\frac{1}{12Z(\theta_1 - \theta_1')} [(\theta_1 - \theta_1')Z^2 + 4\theta_1]$$
 (4.2)

Case (b) same as above condition

where,
$$\mathbf{Z} = \left(\frac{C_{20}}{C_{02}}\right)^{\frac{1}{2}}$$

ii.
$$t_{\text{TEP3}}$$
 is more efficient than t_{TEP1} if
Case (a) $C_{11} > \frac{-1}{4C_{02}(\theta_1 - \theta'_1)} [\theta_1(2C_{03} - 3C_{02}^2)]$

+(
$$\theta_1 - \theta'_1$$
)($C_{20}C_{02} + 4C_{12}$)] (4.3)
Case (b) $\rho > \frac{-1}{4Z(\theta_1 - \theta'_1)} [(\theta_1 - \theta'_1)Z^2 - 3\theta_1)$
(4.4)

iii.
$$t_{TEP4}$$
 is more efficient than t_{TEP1} if
Case (a) $C_{11} < \frac{1}{4C_{02}(\theta_1 - \theta_1')} [4\theta_1(C_{02}^2 - 2C_{03}) - (\theta_1 - \theta_1')(C_{20}C_{02} + 4C_{12}]$ (4.5)

Case (b)
$$\rho < \frac{-1}{4(\theta_1 - \theta_1')Z} [Z^2(\theta_1 - \theta_1') - 4\theta_1](4.6)$$

iv.
$$t_{\text{TEP3}}$$
 is more efficient than t_{TEP2} if
Case (a) $C_{11} < \frac{1}{2C_{02}(\theta_1 - \theta_1')} [(\theta_1 - \theta_1') C_{12} -2 \theta_1 (2C_{02}^2 - C_{03})]$ (4.7)
Case
(b) $\rho < -\frac{2\theta_1}{Z(\theta_1 - \theta_1')}$ (4.8)

v.
$$t_{TEP4}$$
 is more efficient than t_{TEP2} if
Case (a) $C_{11} < \frac{-1}{BC_{02}(\theta_1 - \theta'_1)} [4\theta_1 C_{03} + (\theta_1 - \theta'_1)(C_{20}C_{02} + 2C_{12})]$ (4.9)
Case (b) $\rho < -\frac{z}{8}$ (4.10)

vi.
$$t_{TEP4}$$
 is more efficient than t_{TEP3} if
Case (a) $C_{11} < \frac{-1}{4C_{02}(\theta_1 - \theta'_1)} [4\theta_1(C_{03} - C_{02}^2) + (\theta_1 - \theta'_1)(C_{20}C_{02} - 4C_{12})]$ (4.11)
Case (b) $\rho < \frac{-1}{4(\theta_1 - \theta'_1)} [(\theta_1 - \theta'_1)Z^2 + 4\theta_1]$ (4.12)

Empirical Study

To study the efficiency of different estimators we consider six natural populations collected from different textbooks. Table 1 gives the description of the populations and the size of the population (N). Table 2 gives Correlation Coefficient (ρ) and the Coefficient of Variations of x and y (C_x and C_y). Table 3 gives the choice of sample size. Table 4 gives the exact MSE of different estimators i.e. mean per unit estimator (\bar{y}), the conventional product estimator t_{TP} , t_{TEP1} , t_{TEP2} , t_{TEP3} and t_{TEP4} .

Table 1. Description of Populations

Popl. No.	Ν	X	Y	Ref.
1	25	Number of Startups	Average Atmos- pheric Temperature	[13] p.352
2.	12	Hundreds of Fruits on a Tree	Percentage of Fruits Wormy	[15] p.252
3	70	Loads of Garbage	Cost of Garbage Disposal	[16] p.112
4	24	Marks for Car Safety	Marks for Car Price	[14] p.335
5	25	Average Atmospheric Temperature	Amount of Steam Used per Month	[13] p.352
6	12	Year	Number of Farms (in millions)	[12] p.476

 Table 2. Population Parameters

Popl. No.	ρ	C _x	Cy	Ref.
1				[13]
	-0.24	0.197	0.328	p.352
2.				[15]
	-0.54	0.429	0.356	p.252
3				[16]
	-0.55	0.204	0.151	p.112
4				[14]
	-0.7	0.335	0.361	p.335
5				[13]
	-0.85	0.328	0.173	p.352
6				[12]
	-0.9	0.009	0.385	p.476

Table 3. Choice of Sample Size

Popl. No.	Ν	n′	n	Ref.
1	25	14	7	[13] p.352
2.	12	8	4	[15] p.252
3	70	34	17	[16] p.112
4	24	14	7	[14] p.335
5	25	14	7	[13] p.352
6	12	8	4	[12] p.476

International Journal of Advanced Technology & Engineering Research (IJATER) National Conference on Recent Trends in Science, Technology & Management (NCRTSTM-2018)

Popl. No.	$t_0=\bar{y}$	t _{TP}	t _{TEP1}	t _{TEP2}	t _{TEP3}	t _{TEP4}
1	30.66	31.25	28.37	28.13	29.59	27.78
2	21.63	22.45	15.69	15.77	16.73	15.43
3	0.619	0.743	0.4901	0.4902	0.487	0.495
4	0.139	0.093	0.092	0.093	0.091	0.097
5	0.273	0.342	0.137	0.139	0.14	0.136
6	0.226	0.201	0.204	0.199	0.188	0.229

Table 4. MSE of Estimators

- [12] K. Black, Business Statistics for Contemporary Decision Making, 6th Edition, New York, US: John Wiley & Sons, Inc., 2009
- [13] N. R. Draper and H. Smith, *Applied Regression Analysis*, New York, US: John Wiley & Sons, 1966.
- [14] W.W. Hardle and Z. Hlavka, *Multivariate Statistics: Exercise and Solutions*, New York, US: Springer Publications, 2007
- [15] J. F. Kenney & , E. S. Keeping, *Mathematics of Statistics Part One*, 3rd Edition, New York, USA: D. Van Nostrand Company, Inc., 1954
- [16] J. D. Jobson (1991) Applied Multivariate Data Analysis Volume I: Regression and Experimental Design, New York, USA : Springer Science+Business Media, LLC, , 1991

Conclusion

- a. For all populations, the estimators, t_{TEP1} , t_{TEP2} , t_{TEP3} and t_{TEP4} are more efficient than the mean per unit estimator t_0 and t_{TP} .
- b. For population 3, 4 and 6 the estimator t_{TEP3} is most efficient.
- c. For populations 1, 2 and 5, the estimator t_{TEP4} is most efficient.

As the estimator t_{TEP3} and t_{TEP4} perform better than other estimators in most of populations considered here, so anyone of them may be used as an alternative estimator of t_{TEP1} .

References

- P.S. Laplace, "A philosophical essay on probabilities", 1820 (English translation, Dover, 1951)
- [2] W.G. Cochran, "The estimation of the yield of cereal experiments by sampling for the ratio of grain to total procedure", *Jour. Agric. Sci.*, vol. 30, pp. 262-275, 1940.
- [3] D. J. Watson, "The estimation of leaf area in field crops." Journal of the Agricultural Science, vol. 27, pp. 474-483, 1937.
- [4] D. S. Robson, "Application of multivariate polykays to the theory of unbiased ratio-type estimation". *Journal of the American Statistical Association*, vol. 52, pp. 511-522, 1957.
- [5] M. N. Murthy, "Product method of estimation", *Sankhya A*, vol. 26, pp. 69-74, 1964.
- [6] S. Bahl and R. K. Tuteja., "Ratio and product type exponential estimator", *Information and Optimization Sciences*, vol. 12, pp. 159-163, 1991.
- [7] H. P. Singh and G. K. Vishwakarma, "Modified Exponential Ratio and Product Estimators for Finite Population Mean in Double Sampling", *Austrailian Journal of Statistics*, vol. 36, pp. 217-225, 2007.
- [8] D.T. Searls, "The utilization of known Coefficient of Variation in estimation procedure," *Journal of the American Statistical Association.*, vol. 59, pp. 1225-26, 1964.
- [9] V. K. Srivastava, "On use of Coefficient of Variation in estimating mean," *Journal of Indian Society of Agricultural Statistics*, vol. 26, pp. 33-36, 1974.
- [10] L. N. Upadhyaya and S. R. Srivastava, "A note on use of Coefficient of Variation in estimating mean," *Journal of Indian Society of Agricultural Statistics*, vol. 28, pp. 97-98, 1976.
- [11] L. N. Upadhyaya and S. R. Srivastava, "An efficient estimator of mean when population variance is known," *Journal of Indian Society* of Agricultural Statistics, vol. 28, pp. 9-10, 1976.