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 Abstract 

 In the present paper, on attempt has been made to derive finite summation formulae formulae for the multivariable I-function 

introduced by C.K. Sharma [8] since the multivariable I-Function Includes a large number of special function one and more variable 

as its particular cases, the result established here serve as key formulae giving as a large number of new and interesting result by 

specializing the parameter involved. 

Introduction and Notation  

For the multivariable I-Function which was introduced by 

Sharma and Panday ( [6], [7] ) which in an extension of the 

multivariable H-function. This multivariable I-Function 

includes I-function, fox's H-Function and Meiger's G-Function 

of one and two variable, the generalized Lauricella function 

defined by Shrivastava  and Daoust [4]. Appeal function the 

Whittaker function therefore the result established in this 

paper are of a general character and hence encompass several 

cases of interest. 

The object of this paper is to establish four finite summation 

formulae for the multivariable I-Function these formulae will 

yeilda number of new and know results including the result of 

Gupta and Garg [2], [3]. 

 The multivariable I-Function defined by Sharma and 

Panday. Since only the Parameter which subscript 1 in the 

definition of the multivariable I-Function (8) undergo changes 

in our summation formulae that following, to simplify notation 

problems, we specify and these parameter in them. Thus  I 

 ),;,(),,;( 11 khrbkhra   would represent the 

multivariable I-Function defined Sharma. But having a1 

replaced by a1 –r, 
)(

1

r
  replaced by h

(i) 
(i=1,2, ........r), b1 

replaced by b1 –r, ),.........2,1(
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h   the last of the 

parameters remaining unchanged and so on we shall give 

below three-term contiguous relation for the multivariable I-

Function and use them later on. 
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The contigeous relation (1.1) , (1.2) and (1.3), (1,4) can be 

developed on lines similar to those given by Buchman and 

Gupta {1}.(1). 

Finite summation formulae  

The finite summation formulae to be established are :- 

(i).
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provided that the series involved in all the above formulae is 

absolutely convergent . 

Proof : To prove (2.1) putting r=1, 2 ............ n in (1.1) in 

sucession  and after taking the sum, we see that in the resulting 

reins on the right hand side, after that terms cancel art and we 

arrive at the required result (2.1). 

  Similarly, (2.2) and (2.3) can be established 

by using the results (1.2) and (1.3) respecting in place of (1.1) 

(multiplying by quantities 1, β β
2
 , β

n-1  
respectively only for 

(2.3). 

 To prove (2.4), if we iterate by expanding each term 

on the right hand side of (1.4) by the use of this and we do, not 

write the repeat parameters h
1  

........... h
(r)

 again and again containing this process of 

iteration, we finally arrive at the required result (2.4). 
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