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Abstract 

This paper introduces the concept of   qEqE ,,  product summability of Fourier series and its Conjugate Fourier series. Under a 

general condition, we have determine two new theorems on the same operator as a double summability . 
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Introduction 

The product summability   XqE, ,   qEX ,
 
or qE,  

of Fourier series & its allied series, have been studied by a 

number of researchers like, Prasad, Kanhaiya [6], Nigam, 

H.K. [5], Chandra, P. [2], Chandra, P. and Dikshit, G.D. [1], 

Tiwari, Sandeep kumar, and Bariwal, Chandrashekhar [8], 

Dhakal, Binod Prasad [3]. Also a lot of work has been carried 

out by Mohanty, R. and Mohapatra, S. (1968), Kwee, B. 

(1972), Sachan, M.P. (1983), Bhagwat, Purnima (1987), Lal, 

S., Singh, H.P., Tiwari, Sandeep kumar, and Bariwal, Rathore, 

H.L. and Shrivastava, U.K. (2012), Nigam, H.K. and Sharma, 

K. (2012,2013), Sinha, Santosh kumar & Shrivastava, U.K. 

(2014), Mishra, V.N. and Sonavare, Vaishali (2015) and many 

more, under analogous conditions. In the same line, so many 

results established on double factorable summability of double 

Fourier series, the methods of    1,1,,1,1, HC  and 

 nm qpN ,, . Till now, no result found on double Euler 

summability of Fourier series & its allied series as a general 

case. Under a general condition, hear we have established two 

new theorems on   qEqE ,,  product summability of 

Fourier series and its Conjugate series. 

Definition and Notation 

Let  tf
 
be a Fourier series integrable in the Lebesgue sense 

over   ,  and periodic with period 2 , then let 
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is called the Conjugate series of Fourier series. 

Let 


0n

na  be an infinite series whose 
thn partial 

sum 
ns is given by 
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then the infinite series 


0n

na is said to be  qE,
 
summable 

to a definite number s , (Hardy [4]). 

The product of  qE,
 

summability by itself defines the 

  qEqE ,,  double summability. Thus the   qEqE ,,  

transform of 
qqEE

nt of  ns is given by  
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, as n then the series 



0n

na is summable 

to s by   qEqE ,,  summability method. 

We use the following notation throughout the paper. 

       xftxftxft 2   

     txftxft   
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Known Theorem 

In 2013, Nigam, H.K.[5] has proved the following theorems 

on   1,2, EC summability of Fourier series and its 

Conjugate series. 

Theorem 1: Let  nc be a non-negative, monotonic, non-

increasing sequence of real constants such that 
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where,  t is positive, monotonic and non-increasing 

function of t  

and       111log  nCnOn  , as n  

    (3.2) 

then the Fourier series (2.1) is summable   1,2, EC  to 

 xf . 

Theorem 2: Let  nc be a non-negative, monotonic, non-

increasing sequence of real constants such that 

 
n

v

vn cC , as n  

If 

   
  










t

Ct

t
oduut

0 1 
   , as 0t  

    (3.3) 

where  t is positive, monotonic and non-increasing 

function of t , 

  









 n

k
k

nnO
kn



 21
2

1
2   

    (3.4) 

And condition (3.2) holds then the Conjugate Fourier series 

(2.2) is summable to  
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at every pt where this integral exists. 

 

Main Theorem 

Theorem 1: Let  np be a positive, monotonic, non-

increasing sequence of real constants such that 
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then the Fourier series (2.1) is summable   qEqE ,,  to 

 xf  at pt xt  . 

Theorem 2: Let  np be a positive, monotonic, non-

increasing sequence of real constants such that 
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then the Conjugate Fourier series (2.2) is summable 
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5. Lemmas 

For the proof of the theorem, we require the following 

lemmas.  

Lemma 1: If 
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Lemma2: If 
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Lemma4: If 
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Proof 

Proof of Theorem 1: Following Zygmund [9], the 
thn partial 

sum  xsn  of the series (2.1) at xt   is given by  
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From (6.2) and (6.3) we have 
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This completes the proof of theorem 1. 
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Combining (6.5) and (6.6) we have 
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This completes the proof of theorem 2. 
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