
International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 115

HDL IMPLEMENTATION OF DATA COMPRESSION: LZW

ALGORITHM

Simrandeep kaur, Academic & Consultancy Services Division (ACSD),
Centre for Development of Advanced Computing Mohali, Punjab India1;

V.Sulochana Verma, Project Consultant, member of ACSD,
Centre for Development of Advanced Computing (C-DAC) Mohali, Punjab, India2;

Abstract

This paper presents LZW data compression algorithm

which is implemented using finite state machine technique.
The proposed algorithm enhances the performance by using

less number of bits than their ASCII code, utilizing content

addressable memory arrays. Thus the text data can be effec-

tively compressed using the proposed algorithm. Simulation

results using Xilinx tool shows an improvement in lossless

data compression scheme. In addition to this, the proposed

technique results in reduced storage space by 60.25% and

increased compression rate by30.3%.

Keywords - Compression rate, English and Binary text.

Introduction

Data compression is often referred to as coding, where

coding is general term showing any special representation of

data which satisfies a given need. Information theory is de-

fined as the study of efficient coding. Data compression may

be viewed as a branch of information theory in which the

primary objective is to minimize the amount of data to be

transmitted. Data compression has an important role in the
area of data transmission and data storage. It plays a key role

in information technology. The reduction of redundancies in

data representation in order to decrease data storage re-

quirement is defined as data compression. It used to less

usage of resources such as data space or transmission capaci-

ty. Data compression is classified as lossless and lossy com-

pression. Lossless compression is used for text and lossy

compression for image.

The first data compression technique “Morse code” was

invented in 1838. Morse code was used in telegraph. In

1977, Abraham Lempel and Jacob Ziv suggested the basic
idea of pointer-based encoding. In 1980, Terry Welch in-

vented LZW algorithm which became the popular technique

for general-purpose compression systems. It was used in

programs such as PKZIP as well as in hardware devices.

Lempel-Ziv-Welch proposed a variant of LZ78 algorithms,

in which compressor never outputs a character, it always

outputs a code.

 To do this, a major change in LZW is to preload the dic-

tionary with all possible symbols that can occur. LZW com-

pression replaces strings of characters with codes.

Merits of Data Compression

1. It reduces the data storage requirements.

2. It also provides rich-quality signals for audio data

representation.

3. Data security can also be greatly enhanced by en-

crypting the decoding parameters and transmitting

them separately from the compressed database files.

4. Data compression obviously reduces the cost of

backup and recovery of data in computers system by

storing large back-up database files in compressed

form.

Data Compression Model

The block diagram of data compression model is de-

scribed in figure 1.

Figure 1: Data compression model

A data compression model consists of three major stages

which are redundancy, reduction in entropy and entropy

encoding.

Input data

Reduction

Reduction
of entropy

Entropy

encoding
Compressed data

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 116

Data Compression Algorithm: LZW

(Lempel- Ziv Welch) Algorithm

There are many algorithms which have been used for data

compression like Huffman and Lempel-Ziv-Welch (LZW),

arithmetic coding. LZW algorithm is the most popular algo-

rithm. LZW algorithm is just like a greedy approach and

divides text into substrings. Like the LZW algorithm pro-

posed in [2] LZW algorithm has both compression and de-

compression techniques which is explained as

LZW Compression Algorithm

LZW compression algorithm is dictionary based algorithm
which always output a code for a character. Each character

has a code and index number in dictionary. Input data

which we want to compress is read from file. Initially data is

entered in buffer for searching in dictionary to generate its

code. If there is no matching character found in dictionary.

Then it will be entered as new character in dictionary and

assign a code. If Character is in dictionary then its code will

be generate. Output codes have less number of bits than in-

put data. This technique is useful for both graphics images

and digitized voice

String j, char c;

j- get input character

while (there is still input character)

ch- transfer input string to ch .

if(ch is in dictionary)

Generate its codeword;

else

update ch and get next character to ch and

again search data in dictionary;

if(it is not present in dictionary) then

add that string to dictionary;

end if;

Compression example: consider a string “BAABAABB”

is given to LZW algorithm. Figure 2 shows the steps done

by LZW to generate the output code is “1211211C”. In fol-

lowing example when input string (BAABAABBC) is given

as a text to LZW compression algorithm. Initially every sin-

gle character will save in buffer. When „B‟is move to buffer

“parse string” then it will replace by 1.Character has its own

ASCII code of 7 bit. In case of B, it has 65 as ASCII code.

But in dictionary it will replace by 1.So, less number of bits

will be used to represent character. Similarly, AA will move
forward and generating its code which is also fewer bits than

original. BAA is saved in buffer its code is generated from

both AA and B‟s code words that is defined as 12. At last

when full string has been searched in dictionary then its out-

put will be generated as 1211211C.

Figure 2: Example of LZW algorithm

LZW Decompression Algorithm

In LZW decompression algorithm, it needs to take the

stream of code output from the compression algorithm, and

use them to exactly recreate the input stream. Decompres-
sion algorithm is shown as:

ch = output code

while (there is still data to read)

code =get input character;

if (code is not in the dictionary)

entry =get translation of code;

else

entry=get translation of output code;

output entry;

ch =first character in entry

add output code + c to the dictionary

output code = code;

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 117

In decompression algorithm, code will be searched in dictio-

nary and its character will be output.

Implementation of LZW Algorithm

Implementation of LZW Algorithm

The proposed finite state machine diagram of LZW algo-

rithm is shown in figure 3.

Figure 3: Finite state machine Diagram of LZW algorithm

LZW algorithm initially has idle state. New character has

been added to dictionary when no longer match will found in

search process. LZW algorithm is execute state S8 for per-

forming adding operation in dictionary. Dictionary is based

on content access memory technique which has both content

as well as code in it.

Decompressor has reviewed same process since it is poss-

ible to have input codes for searching in dictionary to

recreate its original string. Individual character‟s code can be

also viewed in dictionary

Table 1: Specifications of FSM state for LZW Algorithm

State Description

S0 idle Initial state reset the system

S1 idle1 Initialization of signal

S2Fill buffer Transfer text from file to buffer

S3Read string Read character by character for searching

S4 wait For waiting

S5 search in
dict

For searching in dictionary by signal
character

S6Write to
queue

Save output to output buffer

S7 wait for ack Wait for Bus acknowledge

S8New Entry Adding new entry

S9Generate
codeword

To generate codes

S10 Insert single character

S11search its
codeword

Check in dictionary

S12 generate
codeword

Display codeword

Decompression For performing decompression

Improvement of the Dictionary Storage

Method

LZW algorithm is mainly used for compressing character

but not numeric. Every character has ASCII code which is of

7 bits. But in our proposed algorithm we have to replace

character with 5 bit code in dictionary to improving data

compression rate.

Experimental Results

LZW Compression algorithm is modelled in VHDL. The

syntax of the RTL design is checked by using Xilinx tool.

Simulation Results

In the proposed work, the simulations results are done us-

ing Xilinx ISE Simulator. Simulation results show an im-
provement in lossless data compression scheme. In addition

to this, the proposed technique results in reduced storage

space by 60.25% and increased compression rate by 30.3%.

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 118

LZW Compressor Result

Figure 4 shows that input is given to LZW Compressor
through text file. “Connect the input to logic one & two &

three++*”string is entered to it. Input string having collec-

tion of special characters, alphabets. Whole text will transfer

to buffer “data read” when data_write=1, load=1,

clear=1.Rd_b=0, wr_b=1, data_write=0 and lzw_search=1

are given to start searching process to find longest match in

content access memory arrays. There are two main counters

which are used for searching process. “Count1” is used for

searching character in dictionary. If character is present in

dictionary then its code is saved in other buffer that is

“de11”. “Count” buffer is shifted to next value and start to

point next character present in input data. All searched cha-
racters will save in “check” buffer. Once the content of

check buffer is equal to content of “data read” buffer then

searching process indicate to completed and their codes will

save in “de11” buffer which is shown in figure5 compressed

output is generated through file shown in figure 7.

Input text – connect the input to logic one & two & three.

Output text-12114514615730171425142515

Figure 4: Enter data through file which we want to compress

Given Input text – connect the input to logic one & two &

three.

Figure 5: Searching process (Searching each character from dictionary)

Simulation for LZW Compression algorithm observed on Xilinx tool. When 350 bits entered to LZW compression algo-

rithm then it is transmitted to 119 bits and clock rate for simulation is 493 ps.

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 119

Figure 6: Complete data compression process

Figure 7: Compressed output generate on file

Output text-12114514615730171425142515

RTL view of LZW Compressor

Figure-8: RTL view of LZW Compressor

This RTL view shows the signals which are used for pro-

posed LZW data compression algorithm. Reset, clock,

start_compression used for initialization of data compres-

sion. Load, data_write, wr_b, rd_b are signals used for buf-
fer in LZW algorithm.

Search_lzw is for searching data in dictionary. The signal

description of this proposed algorithm is shown in table 2.

Signal description of LZW Compressor

Table 3: Input/output signals with Remarks

Name Description

Reset To reset

Clock Provide clock

Start_compression Signal for start compres-
sion

Data_write Signal for write data

Load For data load in buffer

Clear Clear buffer

Wr_b Signal for write and read

Rd_b Signal for write and read

Search_lzw For searching

Add_new_entry For adding new data

Data_in Enter value

Verification and Synthesis

For system verification, we successfully execute proposed

LZW algorithm. Test case for finite state machine is gener-

ated in VHDL. The synthesis result of LZW compression

algorithm is summarized in table 4. The synthesis report

shows device utilization summary.

Table 4: Device Utilization Summary

Number of Slices 3606 out of 6144

58%

Number of Slice Flip

Flops

4097 out of 12288

33%

Number of 4 input LUTs 4190 out of 1288

34%

Number of IOs: 30

Number of bonded IOBs: 30 out of 240

12%

IOB Flip Flops: 1

Conclusion

In order to get better compression rate. The proposed

dictionary based LZW algorithm can replace their codes

with 5 bits instead of 7 bits ASCII code. The proposed

LZW algorithm is evaluated by finite state machine tech-

nique. With this technique we have observed that storage

space is reduced up to 60.25% and compression rate im-

proved up to 30.3%. We analyze compression rate with
different number of input bits on Xilinx tool.

Acknowledgment

I would like to thanks Dr. Dilip Kumar H.O.D (Academic

& Consultancy Services Division), Mrs. Vemu Sulochana,

Mrs Manjit kaur, Er.Balwinder Singh for giving their sug-

gestions. I would also like to thank our friends Miss Shikha

Singh and Tapsi Singh for their advice for writing the paper.

I would like to thank my family for their support.

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 120

References
 [1] Parvinder Singh, Manoj Duhan and Priyanka “En-

hancing LZW Algorithm to Increase Overall Perfor-

mance”, India Conference, 2006 Annual IEEE Sept.

2006.

[2] Ming-Bo Lin, Jang-Feng Lee, G. E. Jan, “A Lossless

Data Compression and Decompression Algorithm and

Its Hardware Architecture” VLSI IEEE Transactions

on Volume: 14 2006.

[3] J.Ziv and A.Lempel, “Compression of individual se-

quences via variable length coding,” IEEE Trans. Inf

Theory, vol 24, pp. 530-536, 1978.

[4] M-B Lin, “A parallel VLSI architecture for the LZW

data compression algorithm,” J. VLSI Signal Process.

vol. 26, no. 3, pp. 369–381, Nov.2000.

[5] Parvinder Singh, Sudhir Batra, and HR Sharma,
“Evaluating the performance of message hidden in 1st

and 2nd bit plane", WSEAS Trans. on Information

Science an Applications, issue 8, vol 2, pp. 1220-1227,

August 2005.

[6] H. Park and V. K. Prasanna, “Area efficient VLSI archi-

tectures for Huffman coding,” IEEE Trans. Circuits

Syst. II, Analog Digit. Signal Process. vol. 40, no. 9, pp.

568–575, Sep. 1993.

[7] S. Khalid, “Introduction to Data Compression”, 2nd San

Mateo, CA: Morgan Kaufmann, 2000.

[8] Henriques and N. Ranganathan, “A parallel architecture
for data compression,” pp. 260–266 in Proc. 2nd IEEE

Symp.Parall. Distrib. Process 2005.

[9] Huan Zhang, Xiao-ping Fan, Shao-qiang Liu Zhi Zhong

“Design and Realization of Improved LZW Algorithm

for Wireless Sensor Networks”, International Confe-

rence on Information Science and Technology March

26-28, 2011.

Biographies

Simrandeep Kaur received the B.Tech degree in Com-

puter Science Engineering from the Punjab technical univer-

sity, Punjab in 2010, and pursuing M.Tech degree in VLSI

Design from Centre of Development and Advance Compu-
ting Mohali, Punjab .Currently, She is doing her thesis work

on data compression technique. Her topic of interest is data

compression, security system, data structure and embedded

system. Email-simrandeepkaur25@yahoo.com.

V.Sulochana Verma received M.Tech degree in VLSI

Design from NIT Hamirpur Himachal Pradesh in 2009. Cur-

rently, She is a Project Consultant and member of Academic

& Consultancy Services Division in C-DAC Mohali, Punjab,

Her teaching and research areas include analog circuit de-

sign, interconnects and data compression techniques. Email-

suchivlsi@gmail.com.

http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4086217
mailto:Email-simrandeepkaur25@yahoo.com

