
International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 129

ARCHITECTURE AND PERFORMANCE OF INTELLI-

GENT SYSTEM

Rajesh Kumar, Research Scholar, PhD-Computer Science, NIMS University, Jaipur (Raj) India1
Dr. B. S. Jangra, Associate Professor (CSE), Haryana Institute of Technology, Bahadurgarh (HR) India2

bsjangra@gmail.com2

Abstract

In this paper defined the heterogeneous agents that solve

problems by sharing the knowledge retrieved from the WEB

and cooperating among them for an intelligent system. The

control structure of those agents is based on a general pur-

pose Multi-Agent architecture based on a deliberative ap-

proach. Any agent in the architecture is built by means of
several interrelated modules: control module, language and

communication module, skills modules, knowledge base etc.

Basically the control module uses an agenda to activate and

coordinate the agent skills for a best intelligent system. This

agenda handles actions from both the internal goals of the

agent and from other agents in the basic environment. In this

paper describes how SKELETONAGENT has been used to

implement different kinds of agents and a specialized for a

Multi-Agent System. The implemented Multi Agent System

is the specific implementation of a general WEB gathering

architecture, named MAPWEB, which extends SKELETO-
NAGENT. MAPWEB has been designed to solve the basic

problems in WEB domains through the integration of infor-

mation gathering and their resources planning techniques.

The system which uses information gathered directly from

several WEB sources (plane, train, and hotel Companies

etc.) To solve travel problems. The proposed a architecture

allows integrating the different agent’s tasks with AI tech-

niques like planning to build MAS which is able to gather

and integrate information retrieved from the WEB to solve

problems.

Keywords: Multi-Agent systems, Architectures &
Framework, information gathering, WEB-based systems

Introduction

In an intelligent system a person that learns fast or one that

has a vast amount of experience could be called "intelligent"

but the systems comparative their level of work performance

in reaching its objectives and goals. This implies having
experiences where the system learned which actions best let

it reach its objectives. The Intelligent Agents and Multi-

Agent Systems research fields have experimented a growing

domain interest from different research communities like

Artificial Intelligence, Software Engineering, Psychology,

etc. Those researchers’ fields try to solve the basically two

distinct goals and several characteristics like autonomy,

proactiveness, coordination, language communication, etc.

.This goal tries to obtain an adaptive and intelligent program

which is able to provide the adequate request to the inputs

received from the environment. On the other hand, it is poss-

ible to coordinate several of those intelligent system agents

to build complex societies. When considering societies of

agents, the new issues are arising, like social organization,

cooperation, knowledge representation, coordination, or ne-
gotiation. Those research fields allow testing and simulating

theoretical models and intelligent system architectures and

framework in complex and real domains. There is a wide

range of different domains that can be used to test agent or-

ganizations like business management system, robotics, the

WEB crawler etc.

A Basic and common point of interest for previous areas

of research that how to define and design the individual in-

formation gathering agents that make up these systems and

how to coordinate and organize groups of agents. Different
arquitectures and models have been successfully imple-

mented in several domains and it is possible to learn from

those experiences to build other agent-based models that

could be applied in new intelligent system domains. With

respect to systems that find and use information from the

internet, the closest to our goals is the field of Information

Gathering, which intends to integrate a set of different basic

information sources with the aim of domain querying them

as if they were a single source. However, these architectures

do not intend to use AI techniques in a generic way, as we

do, but only to select the appropriate WEB sources or con-

trol the behavior of agents. In summary, our approach con-
sists of a flexible, reliable and generic MAS architecture and

framework that can use Artificial Intelligence and WEB ga-

thering techniques, by means of agenda-based agents. Be-

sides describing the architecture, an important part of the

paper deals with its instantiation into a Information Gather-

ing system, named MAPWEB, and how it can be applied

into a particular WEB domain (MAPWEB-ETOURISM).

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 130

IS: Agent control cycle

Intelligent System describes the control cycle of the agents
that follow the model described in the previous section. It

can also be seen in Fig. 1, this figure illustrates the control

algorithm, which can be summarized as:

 First, the control module checks the agenda periodically

until the first act is inserted. When a particular task

needs to be achieved, the initial act is inserted in the

agenda. This act could be considered as the main goal or

the initial goal of the agent. Other acts will be generated
in order to achieve this initial goal. New acts could ar-

rive from other agents at any moment. Once several acts

have been inserted into the agenda, a priority-Policy is

applied to sort them out (this evaluation happens at all

cycles of the agent, because the priority of the acts

change dynamically). The control module will select the

act with the highest priority (Acti = max; in Fig. 1).

 When a particular act is selected, the control module
Evaluates() this act and selects the skill that will per-

form the associated task (Evaluate(Acti) selects Skills).

For instance, when an act: Planning is selected, the act

and associated parameters are provided to the planning

skill of the agent.

 Now, there are two possible situations:

The act needs information from other tasks and cannot
be executed (the act is not Ready() yet for execution), so

it will be inserted newly in the agenda (its priority will

be increased in the next cycle: Increment priority(Acti)).

The act is Ready() for execution (the act does not need
any other information). However, it is necessary to take

into account two new situations to know if the act is di-

rectly Executable(): ∗ If the act can be decomposed into

simpler acts, the skill will expand this act into them, as-

signing new priorities to these acts, and finally adding

them into the agenda

(n) =1Actij .priority ()).

If the act is directly executable (all the information is

available and it is not possible to expand), it has pro-

vided to the correspondent Execute() function associated

to this skill. This control cycle continues while the

agenda contains acts. If the agents have their agendas

empty, they will wait for new tasks to perform. This al-

gorithm integrates the agenda, the heuristics and the

available skills as related modules to implement differ-
ent behaviours in the agents. This approach is very flex-

ible because it is possible to modify the behavior of the

agent, or the way to achieve a goal by just modifying

one or several of the following characteristics of acts:

 The priority of a particular act can be modified by the
control module or by the skill. The priorities of the acts

can be redefined by using rules or policies, thus chang-

ing the global solving algorithm performed by the

agents.

 The evaluation of an act determines which skill will

execute the act. If no skill is available, the control mod-
ule will generate a fail.

 Acts in the agenda are selected by means of policies. By

changing the policy it is possible to change the beha-

viour of the agent.

Skeletonagent Agent Architecture

This IS model shown in the previous section our exten-

sions to that model. We address both the agent and the Mul-

ti-Agent architecture. The agent architecture of SKELETO-

NAGENT, which is based on the agent model described in

the previous section. Agents in SKELETONAGENT are

composed of several modules.

Figure 2. SKELETONAGENT architecture of an intelligent

agent

A. Agenda

The Agenda is a dynamic structure that stores their items

named acts. These acts represent the actions that the agent is

considering at a given moment. The agents implemented

using SKELETONAGENT architecture share a standard

communication language to perform actions over their envi-

ronment. A message in above section called performative.
Any performative can be translated into one or many acts

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 131

that could be performed by the receiver agent. When any

agent receives performative, Once this act is selected, its

execution could generate new acts that will be recursively

added to the agenda. These performatives are used by differ-

ent agents to implement several acts like:

i) (achieve, tell): are used by different agents to require

the execution of a specific task and to answer with the

obtained results. When any agent receives achieve, the

related act contains the type of skill that will be neces-

sary. For instance, when a planning agent receives an

achieve performative to solve a problem, several skills

can be used: planning, case-based planning, or askoth-

ers. When this same performative is received by a WEB

agent other skills like: caching, or access-Web could be

used by the agent to execute the act.

ii) (insert, delete): are used to insert or delete a specific

fact (from the sender agent) in the Knowledge Base of
the receiver agent. For instance if an agent is temporari-

ly unavailable in the society, and this fact is known by

the manager agent, it is necessary to delete it from the

yellow pages of all agents.

iii) (register, unregister): are used by the controlagents in

the Multi-Agent systems to manage the insertion and

deletion of the agents in the society.

iv) (ok, ping): are used by the control-agents when it is

necessary to know the state of a particular agent.

v) (wake-up, sleep): are used by different agents to acti-

vate or suspend temporarily their functions

Figure 3. Relation between a per formative and its translated

act.

B. Heuristics & Skills of Intelligent Sys-

tem agent

IS Agents having a set of heuristics function that is used to

decide at any time what act to select from the agenda. Ac-

tually, any agent can be implemented using in its control

module three different types of heuristics (LIFO, FIFO and

ControlPrio). The first two heuristics correspond to the

LIFO (Last In First Out) and FIFO (First In First Out) poli-

cies. These heuristics can be used when it is not necessary to

select the acts in a particular order and allow to test the
agents with simple behaviours. However, these heuristics

present several problems when it is necessary to apply a

priority in the execution of the acts, because there could be

acts with high priority that need to be executed quickly.

Figure 4. Expansion of an initial act into several subacts.

As explained before, an agenda contains acts. Some of

them can be decomposed into lower level acts, which are

subsequently introduced into the agenda. When a particular

act (atomic, or low level) cannot be decomposed further, it
will be executed by the agent. Those executable acts are

actually the skills Si of the agent. Automatic access to the

WEB, or executing a planner are examples of skills. Figure 4

shows how a high level act (to solve a planning problem)

can be decomposed into several subacts, taking into account

that the Planner Agent who receives the problem has several

skills to obtain solutions for planning problems. From the

point of view of decomposition, it is useful to divide acts

into two types: AND acts and OR acts. AND acts require all

its subacts to finish successfully whereas OR acts need only

one of them to end. For instance,
act:WebAgentsCooperation of Fig. 4 is an AND act because

it needs its three subacts to end successfully. On the other

hand, act:Solve-Planning- Problem will end with success if

any of its subacts (act:SearchPlanBase, act:Planning, . . .)

obtains a solution to the planning problem.

C. IS Knowledge base

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 132

Knowledgebase shown that and stores knowledge that can

be used by the agent skills. For instance, in MAPWEB a set

of agents specialized in planning are used in their team.

These IS agents need to use several knowledge sources to

achieve their main goal: to solve a problem using proper

planning. The knowledge used by these agents is: a descrip-
tion of the problem to be solved, the operations (operators)

that can be used (represented in a Domain description), sev-

eral domain dependent heuristics techniques.

Information gathering in the WEB

In IS an information gathering and retrieval technique, ex-

tract knowledge from documents stored in the WEB by tak-

ing advantage of their inner structure. IG systems like SIMS

use information retrieved from relational databases but other

IG systems, like Heracles, can use other kinds of sources
that provide the information into a semi-structured way (the

useful information is stored inside the retrieved document

and it is necessary to extract or filter the information pre-

viously). Several problems arise when WEB IG systems are

designed and implemented:

1. An IG system needs to select, access and filter the in-

formation from the appropriate sources, and finally, rea-

son with the gathered knowledge to build a solution.

2. IG systems have to deal with multiple, distributed, and
heterogeneous WEB repositories. WEB sources can be

heterogeneous in both content and format. Besides, the

number and types of those repositories grow over time.

3. WEB servers can be down at some times.

4. The IG system might find a large number of solutions,

so it is necessary to manage this overload to provide

them in a comprehensive way to the user.

Related work

The main aim of this particular section is to describe the

ideas related to the two main issues of this work: agenda

architectures and WEB information systems With respect to

agenda-based systems, the most closely related to our work

are the CooperA and ABC2. The CooperA (cooperating

agents) platform is a software framework that supports the

cooperation of heterogeneous, distributed and semiautonom-

ous Knowledge-Based (KB) systems. In CooperA the KB
systems are translated into application agents that are finally

be integrated into one system. The users can interact with all

the agents using a user interface agent. The CooperA archi-

tecture is built by a set of interconnected layers. These layers

are: The CooperA kernel, the message-passing mechanism,

the collection of CooperA system Agents, and finally the

Community of Application-Specific Agents. Any agent in the

CooperA architecture is a dynamic structure that communi-

cates with other agents in the system through a message

passing skill.

Conclusions

In this paper we have presented SKELETONAGENT, an

agenda-based flexible architecture for building agents that

can participate in MAS. The utilization of an agenda-based

architecture for agents, allows coordinating multiple agents

with heterogeneous skills in a flexible way. Also, it is very

simple to change the behavior of the agents by modifying
the policies used to manage the agenda. Although our ap-

proach is based on work described in related references,

their ideas have been extended in several ways. First, we

allow defining acts which are composed of sub acts that can

be executed in parallel and can have AND/OR structures.

This allows defining alternative ways to achieve a goal and

to mix different high level tasks at the minimum level of

granularity. For instance, if there are two tasks A and B

composed of several subtasks A1, A2 . . . and B1, B2, . . . ,

every subtask will be processed when they are ready, thus

interleaving the two tasks A and B in the most appropriate
order. Second, we have oriented our architecture to facilitate

integrating AI solving techniques with IG techniques to

work in WEB domains. To do so, we have instantiated

SKELETONAGENT to build a MAS, named MAPWEB,

that combines AI planning and WEB information gathering

techniques. MAPWEB is a generic architecture that can be

used by evelopers in any domain requiring planning and

WEB sources. We have used it to solve travel assistant prob-

lems in the etourism domain (MAPWEB-ETOURISM). This

example has also been used to illustrate the behaviour of the

agenda-based architecture. Some of SKELETONAGENT

features have also been tested in other domains like problem
solving through Genetic Programming and WEB News Ga-

thering, which shows that it is a general framework

References

1. R. Aler, D. Camacho and A. Moscardini, Cooperation

between agents to evolve complete programs, Chapter

in: Intelligent Agent Software Engineering, Valentina
Plekhanova, University of Sunderland, United King-

dom, Idea Group Publishing ed., 2003, pp. 213–228.

2. J.L. Ambite, G. Barish, C.A. Knoblock, M. Muslea, J.

Oh and S. Minton, Getting from here to there: Interac-

tive planning and agent execution for optimizing travel,

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 133

in: The Fourteenth Innovative Applications of Artificial

Intelligence Conference (IAAI), Edmonton, AB, Cana-

da, 2002.

3. Y. Arens, C.Y. Chee, C.-N. Hsu and C.A. Knoblock,
Retrieving and integrating data from multiple informa-

tion sources, International Journal of Cooperative In-

formation Systems

4. M. Balabanovic, Y. Shoham and T. Yun, An adaptive
agent for automated web browsing, 1995.

5. R.I. Brafman and M. Tennenholtz, Modeling agents as

qualitative decision makers, Artificial Intelligence 94(1–

2) (1997), 217–268.

6. W. Brenner, R. Zarnekow and H. Wittig, Intelligent

Software Agents. Foundations and Applications, Sprin-

ger-Verlag, New York, 1998, ISBN: 3-540-63411-8.

7. R.A. Brooks, Intelligence without representation, Num-
ber 47 in: Artificial Intelligence, 1991, pp. 139–159.

8. D. Camacho, R. Aler, C. Castro and J.M. Molina, Per-
formance evaluation of Zeus, Jade and SkeletonAgent

frameworks, in: Proceedings of the IEEE Systems, Man,

and Cybernectics Conference (SMC-2002), Hammamet,

Tunisia, IEEE, 2002.

9. D. Camacho, D. Borrajo, J.M. Molina and R. Aler,
Flexible integration of planning and information gather-

ing, in: Proceedings of the European Conference on

Plannin.

10. P.R. Cohen, A. Cheyer,M.Wang and S.C. Baeg, An

open agent architecture, in: In Working Notes of the

AAAI Spring Symposium: Software Agents, AAAI, Men-
lo Park, CA, 1994, pp. 1–8.

About Authors:

1. Rajesh Kumar, Post Graduate in Computer Science,

Presently a Research Scholar in NIMS University, Jai-

pur (Raj.)

2. Dr B S Jangra, PhD Computer Science and Working as

Associate Professor in HIT.

