
International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 91

DEVELOPING DICTIONARY FOR IDENTIFIERS USING

NATURAL LANGUAGE PROCESSING

V. Angayarkanni, M.Tech student in Computer Science and Engineering
Dr.MGR Educational and Research Institute Chennai, Tamilnadu, INDIA

angayarkannics@gmail.com

Abstract

Now a day’s software maintenance and reuse process is a

tedious process. Meaningful method names are useful for

readability and maintenance of the software .Large time and

effort provided to software maintenance and reuse. This can

be reduced by providing software engineers with software

tools such as IDEs, which automatically provide information
about the source code. Identifiers are the important element

in the program, if the identifiers in the program has inappro-

priate name programmers find difficult to understand the

program. In this paper proposes a method to for building

dictionary for identifiers from source code written in object

oriented language. Dictionary is built using the verb object

relationship extracted from source code. This dictionary is

helpful in software reengineering and maintenance.

Key Terms: reengineering, identifiers, maintenance, pro-

grammers, source code, verb object.

Introduction

Identifiers are the important element in the source code.

Developers try to understand the source code using the roles

of identifiers. If the identifiers in the program has inappro-

priate name it will take large time to program comprehen-

sion. Multiple identifiers are used to represent the role of the

program. To make the software reengineering and mainten-

ance process easier this dictionary is developed. Reengineer-
ing is the modification of the software system takes place

after it has been reverse engineered generally to add new

functionality or to correct errors. To make the reengineering

process easy developers has to give appropriate name to

identifiers. Unfortunately not all the developers are giving

correct names to identifiers, so during the program compre-

hension it is tough understand the program elements. To

reduce the work for developer’s dictionary is developed.

Software reengineering process is complex process. Pro-

grammers are provided with tools like IDEs to increase the

productivity. IDEs are designed to maximize programmer’s
productivity by providing tightly-knit components by similar

user interfaces. This should mean that the programmers has

to do less mode switching versus using discrete development

program Dictionary contains the good examples for identifi-

ers. This dictionary is useful for naming classes and va-

riables. This dictionary is built using the verb object rela-

tionship in the source code. Verb object relationship ob-

tained using the method property. Verbs are extracted from

the method name and class name and objects are extracted

from the formal parameters of the method, relationship is

obtained using the pattern matching system. This dictionary

is developed using MVC2 architecture to increase the securi-

ty. Model view controller architecture is a software architec-

ture currently considered architecture pattern used in soft-

ware engineering. This pattern isolates domain logic from
the user interface permitting independent development, test-

ing and maintenance of each. Model view controller (MVC)

pattern creates application (input logic, business logic, and

UI logic) while providing a loose coupling with this element.

In complex computer applications that present a large

amount of data to a user, a developer often wishes to sepa-

rate data (model) and user interface (view) concerns, so that

changes to the user interface will not affect the data han-

dling, and that the data can be recognized without changing

the user interface. The model view controller solves this

problem by decoupling data access and business logic from
data presentation and user interaction by introducing the

intermediate component controller. It is common to split an

application in to separate layers presentation (UI), domain

logic, data access. In MVC2 the presentation layer is further

separated in to view and controller. MVC2 encompasses

more of the architecture of an application than is typical for

a design pattern. MVC2 is often seen in web applications,

where view is actual HTML page, the controller is the code

that gathers dynamic data and gathers dynamic data and ge-

nerates the content with in the HTML. Finally, the model is

represented by the actual content, usually stored in database

or XML files. The user interacts with the user interface in
some way. The controller handles the input event from the

user interface, often via a registered handler or callback. The

controller access the model, possibly updating it in a way

appropriate to the user’s action. A view uses the model (indi-

rectly) to generate appropriate user interface. The view gets

its own data from the model. The model has no direct know-

ledge of the view. The user interface waits for further user

interactions, which begins the cycle anew. By decoupling

models and views, MVC2 helps to reduce the complexity in

architectural design, and to increase flexibility and reuse.

The model view controller design pattern, the model view

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 92

controller design pattern, also known as model2 in J2EE

application programming, is a well established design pat-

tern for programming. The model1 and model2 architectures

both separate content generation (business logic) from the

content presentation (HTML formatting). Model2 differs

from model1 in the location where the bulk of the request
processing is performed by a controller rather than in the

JSP pages. The main aim of the MVC2 to separate the busi-

ness logic and application data from the presentation data to

the user. And also MVC2 architecture is reusable when the

problem recurs, there is no need to invent the solution just

has to follow the pattern and adapt as it necessary. They are

very expressive by using MVC2 our application becomes

very expressive.

This paper proposes a method as an example of an appli-

cation, which could support the work of a company that

must help with improvement of the company.

Related Work

 A wide variety of tools are required to programmers to

develop an application, for that many tools and IDEs are

developed. IDEs are very useful for the developers to save

their time. To make the developers work easy many tools

and systems are developed. So that developer’s productivity
will be increased. The first existing system developed was

syntactic details for method names; it will give meaningful

name for method property. The vast amount of software

written in java defines an implicit convention for pairing

names and implementations. This system is also used to me-

chanically check whether the method name is correct or not.

The first existing system is used to extract the method

names, which are used to identify the names bugs in the

large software applications. The first existing system is also

automatically suggesting suitable names for method. The

software systems are growing continuously, locating code

for maintenance and reuse tasks become very difficult. Code
search techniques are using natural language query

processing; in the second existing system they provide the

system to automatically extract the code from source code

and categorize the search results in hierarchy. This helps

developers to quickly identify relevant program elements for

investigation or to quickly identify relevant words. It will

give little support to developers to search the relevant code,

So that maintenance work will be easy and also developers

can reuse the codes. The effort given by software developers

in software maintenance can be reduced by providing tools

and IDEs that give tedious and error prone tasks. The natural
language processing improves the effectiveness of the soft-

ware maintenance process and reuse. Tools such as IDEs

automatically provide program information and automated

support to developers. There is considerable place for im-

provement for existing software development tools. The

third existing system is useful in improving tool for program

comprehension; maintenance and reuse of object oriented

code. This system automatically extracts the clues in the

form of verb object pairs and also it uses the natural lan-
guage processing. This system describes the extraction rules

and an evaluation of the system for java is described. The

above described existing systems are used in software main-

tenance and reuse process and the above described tools are

based on the natural language processing and extraction of

the method property. The existing system developed is do-

main specific dictionaries for identifiers. This is also based

on the natural language processing and verb object relation-

ship. This dictionary is also useful in software maintenance

and reuse process. Dictionary is helpful in naming identifi-

ers. Because some developers are giving inappropriate

names for identifiers so when doing maintenance it is tough
to understand the codes. Identifiers are the important key

element in understanding the program elements. Verb object

relationships are extracted from the method name and para-

meters of the method and the class name. Verb is extracted

from the method name and objects are extracted from the

method parameters. Method property is used for the verb

object relationship. First the method name, parameters are

extracted from the method property and it is classified as

return type, verb, direct object and indirect object after that

very frequent relationships are filtered and put it in the dic-

tionary. Verb object relationship is obtained using the pat-
tern matching system. For developing the system input given

is the object oriented source code and output is the dictio-

nary. This dictionary is useful in naming identifiers and also

for the program comprehension. It will help the developers

to increase their productivity and to reduce the work.

Proposed Work

In the proposed work we developed a dictionary for iden-
tifiers using MVC2 architecture and client server model.

This dictionary can be accessed by multi user at the same

time.MVC2 architecture is for better security and to change

the window based application to the web application. Client-

server model is a computing model that acts as distributed

application which partitions tasks or workloads between the

providers of a resource or service, called servers and service

requesters, called clients. Often clients and servers commu-

nicate over a computer network on separate hardware. A

server machine is a host that is running one or more server

programs which share their resources with clients. A client
do not share any of its resources, but request a servers con-

tent or service function. Clients therefore initiate communi-

cation sessions which await incoming requests. The client-

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 93

server characteristic describes the relationship of cooperat-

ing programs in an application. The server component pro-

vides a function or service to one or more clients, which

initiate requests for such services. Functions such as web

application and data access are done on client server model.

User accessing the dictionary from their computer uses a

web browser client to send a request to a web browser at any

point. Those program in turn forward the request to its own

database client program that sends a request to a database

server, which in turn serves it back to the web browser client

displaying the results to the user. Many business applications

being written today use the client-server model.

MVC2 architecture is used to develop the dictionary struc-

ture.MVC2 architecture is for the better security. Model

View Controller (MVC) applied to web applications. Hence

the two terms can be used interchangeably in the web world.
With MVC2 you can have as many controller servlets in

web application. In fact we can have one controller servlet

per module. However there are several advantages of having

a single controller servlet for the entire web application.

Web applications based on Model 2 architecture are easier to

maintain and extend since the views do not refer to each

other and there is no presentation logic in the views.

Figure 1. Architecture of proposed system

A. Obtaining Identifiers Using Natural

Language Processing

Identifiers are the names of variables, methods, classes,

packages and interfaces. Unlike literals they are not the thing

themselves, just ways of referring to them. Identifiers must

be composed of letters, numbers, the underscore and the

dollar sign. Identifiers may only begin with letter, the un-

derscore or a dollar sign.

Each variable has a name by which it is identified in the

program. It’s a good idea to give your variables mnemonic

names that are closely related to the values they hold. Varia-

ble names can include any alphabetic character or digit and
the underscore. The main restriction on the names you can

give your variables is that they cannot any white space. You

cannot begin a variable name with a number. There is no

limit to the length of a variable name. Identifier allows a

programmer to refer to the item from other places in the pro-

gram. To make the most out of the identifiers you choose

make them meaningful and follow the standard java naming

conventions.

The name of the method in object oriented program is

called as verb. Mostly method name is verb or verb clause.

Method parameters are noun or noun clause. In some cases
the method name may be noun or adjective. In some cases

method name contains no verb, Method name will be noun

or adjective. In some cases method name contains no verbs.

A function name and a set of named arguments which are

defined by nested escaped identifiers. This allows active

identifiers to be nested to an arbitrary depth making possibly

for them to specify a full functional program within an iden-

tifier.

Fig .2. Nested Identifiers

B. Obtaining Verb And Object From Me-

thod Property Using Pattern Matching

Technique

Verb and object are obtained from the method property.

Verb is extracted from the method name and object is ex-

tracted from the method parameters, the above process is

done by the natural language processing and pattern match-

ing technique. The verb object relationship is obtained by

the pattern matching system. The input to the method is
source files written in object oriented language, and the out-

put is a dictionary consisting of Return type, verb, direct

object and indirect object.

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 94

In source code, there are many pairs of verbs and objects

that appear in natural language.

TABLE 1: Verb object combinations

C. Pattern Matching Technique

Pattern matching addresses issues of searching and match-

ing strings and more complicated patterns such as trees,

graphs, regular expressions and arrays. The goal is to derive
non-trivial combinatorial properties for such structures and

then to exploit these properties in order to achieve improved

performance for the corresponding computational problem.

Pattern recognition algorithm generally aims to provide a

reasonable answer for all possible inputs and to do “fuzzy”

matching of inputs. This is opposed to pattern matching al-
gorithms, which look for exact, matches in the input with

pre-existing matches.

A common example of a pattern matching algorithm is

regular expression matching, which looks for pattern of a

given sort in textual data and is included in the search capa-

bilities.

D. Extraction Of Verb Object Relationship

From Source Code

To extract the verb object relationship from the source

code, identify the method property from the source code.

After identifying the method property retrieve all method

declarations from the source code. Then for each method
declaration obtain identifiers for each declaration. Obtain

words for each identifier. This information is expressed in

the form of tuple V, DO, IO. Select the tuple that appear

frequently in many software products. Source files are

parsed using pattern matching to get the verb object relation-

ship.

When extracting the method, Return type, method name,

names and type of the formal parameters, Name of the class

are extracted and stored as the tuples. Obtain the words from

the identifiers and part of speech of each word and form the

words in VO relationship, and store it in a dictionary.

Figure 3. Extracted Dictionary

In the extracted dictionary the return type may be non

void type, if it is non void it is treated as noun. Sometimes

indirect object may be empty.

E. Filtering Verb Object Dictionary

This step filters the verb object dictionary that obtained

from the extraction part. It filters the frequently appeared

verb object relationship. In the filtering process it calculates

the occurrences of the each words and it filters the frequent-

ly appearing words. The words that appear in the certain
number software are included in the dictionary. Frequencies

of the each word are calculated in the filtering process. After

the frequencies are calculated the words are filtered from the

extracted dictionary. In the filtering and extracting process

Naïve Bayes classifier is used to extract and filter the large

amount of data.

Figure 4. Frequency Calculation of Words

F. Support Vector Machine

Support vector machines (SVM) are offers one of the

most robust and accurate methods among all well-known

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 95

algorithms. It has a sound theoretical foundation, requires

only a dozen examples for training, and is insensitive to the

number of dimensions. In addition, efficient methods for

training SVM are also being developed at a fast pace.

In a two-class learning task, the aim of SVM is to find the
best classification function to distinguish between members

of the two classes in the training data. The metric for the

concept of the “best” classification function can be realized

geometrically.

For a linearly separable dataset, a linear classification

function corresponds to a separating hyper plane f (x) that

passes through the middle of the two classes, separating the

two. Once this function is determined, new data instance xn

can be classified by simply testing the sign of the function f

(xn); xn belongs to the positive class if f (xn) > 0.

SVM additionally guarantee is that the best such function

is found by maximizing the margin between the two classes.

Intuitively, the margin is defined as the amount of space, or

separation between the two classes as defined by the hyper

plane. Geometrically, the margin corresponds to the shortest

distance between the closest data points to a point on the

hyper plane. Having this geometric definition Allow us to

explore how to maximize the margin, so that even though

there are an infinite number of hyper planes, only a few

qualify as the solution to SVM.

The reason why SVM insists on finding the maximum

margin hyper planes is that it offers the best generalization

ability. It allows not only the best classification performance

(e.g., accuracy) on the training data, but also leaves much

room for the correct classification of the future data. To en-

sure that the maximum margin hyper planes are actually

found, an SVM classifier attempts to maximize the follow-

ing function with respect to w and b:

1 1

1
|| || ((.))

2

t t

P i i

i i

L w y w x b i

Where t is the number of training examples, and αi, i = 1, .

. . , t, are non-negative numbers such that the derivatives of

L P with respect to αi are zero. αi are the Lagrange multip-

liers and L P is called the Lagrangian. In this equation, the

vectors _w and constant b define the hyper plane.

Resulting Dictionary

The output of the dictionary is a web application built us-

ing MVC architecture and client server model. The dictio-

nary consists of the Tuple return type, method name, para-

meters, class name, verb, direct object, Indirect object. The

entries in the dictionary, i.e. tuples consisting of <V, DO,

IO>, are extracted from identifiers related to a method.

Figure 5. Output of the dictionary

After extraction and filtering the output of the dictionary

consists of the frequent words occurred in the source code.
Here source code of the java is taken.

Conclusion

The main advantage of the proposed system is high secu-

rity and dictionary can be accessed by multiple clients at the

same time. Developer often wishes to separate data (model)

and user interface (view) concerns, so that changes to the
user interface will not affect data handling, and that the data

can be reorganized without changing the user interface. By

providing dictionary developers can increase their rate of

work. Software maintenance and reuse process is complex

process, because of this kind of tools maintenance process

will be easy and productivity can be increased.

References

[1] Yasuhiro Hayase, Yu Kashima, Katsuro Inoue,Yuki

Manabe., “Building Domain Specific Dictionaries of

Verb-Object Relation from Source Code”,2011 15th Eu-

ropean Conference on Software Maintenance and Reen-

gineering

[2] Eisenbarth, T., Koschke, R., and Simon, D., "Locating

Features in Source Code", IEEE Transactions on Soft-

ware Engineering, vol. 29, no.3, March 2003.

[3] Enslen, E., Hill, E., Pollock, L., and Vijay-Shanker, K.,
"Mining Source Code to Automatically Split Identifiers

for Software Analysis", in Proc. of 6th IEEE MSR'09,

Vancouver, Canada May 16-17 2009.

[4] Grant, S., Cordy, J. R., and Skillicorn, D. B., "Auto-
mated Concept Location Using Independent Component

Analysis ", in Proc. of 15th WCRE'08, Antwerp, Bel-

gium, October 15-18 2008.

International Journal of Advanced Technology & Engineering Research (IJATER)

ISSN NO: 2250-3536 VOLUME 2, ISSUE 2, MARCH 2012 96

[5] Haiduc, S. and Marcus, A., "On the Use of Domain

Terms in Source Code", in Proc. of 16th IEEE ICPC'08,

Amsterdam, The Netherlands, June 10-13 2008.

[6] Hill, E., Pollock, L., and Vijay-Shanker,K., "Automati-

cally Capturing Source Code Context of NL-Queries for
Software Maintenance and Reuse", in Proc. of 31st

IEEE/ACM ICSE'09, May 16-24 2009.

[7] Lawrie, D., Morrell, C., Feild, H., and Binkley, D., "Ef-
fective Identifier Names for Comprehension and Memo-

ry", Innovations in Systems and Software Engineering,

vol. 3, no. 4, 2007.

[8] Maletic, J. I. and Marcus, A., "Supporting Program
Comprehension Using Semantic and Structural Informa-

tion", in Proc. of 23rd ICSE'01, Toronto, Ontario, Cana-

da, May 12-19 2001.

[9] Takang, A., Grubb, P., and Macredie, R., "The Effects
of Comments and Identifier Names on Program Com-

prehensibility: An Experimental Investigation", Journal

of Programming Languages, vol. 4, no. 3, 1996.

[10] Shepherd, D., Fry, Z., Gibson, E., Pollock, L., and Vi-

jay-Shanker, K., "Using Natural Language Program
Analysis to Locate and Understand Action-Oriented

Concerns", in Proc. of 6th AOSD'07, 2007.

[11] Von Mayrhauser, A. and Vans, A. M., "Program Com-

prehension During Software Maintenance and Evolu-

tion", Computer, vol. 28, no. 8,1995.

